《从空间曲线到高斯-博内定理》共分四个部分,十个章节,是论述空间曲线和曲面理论的一本入门读物。第一部分阐明了本书使用的数学工具:向量的代数运算以及变向量的求导运算。第二部分讨论了曲线的基本概念,引入了弧长参数,也讨论了描述空间曲线变化的曲率与挠率这两个几何量。最后,证明了弗雷内-塞雷公式,并以此证明了曲线的基本定理:曲
ThePurposeofthisvolumeistoprovideanaccountofthemodernalgebraicmethodsavailablefortheinvestigationofthebirationalgeometryofalgebraicvarieties.Anaccountofthesemet
ThisVolumeisthefirstpartofaworkdesignedtoprovideaconvenientaccountofthefoundationsandmethodsofmodernalgebraicgeometry.Sincenearlyeverytopicofalgebraicgeometryha
ThisVolumegivesanaccountoftheprincipalmethodsusedindevelopingatheoryofalgebraicvarietiesinspaceofndimensions.Applicationsofthesemethodsarealsogiventosomeofthemo
本书共有六章,分别介绍向量与坐标,轨迹与方程,平面与空间直线,柱面、锥面、旋转曲面与二次曲面,二次曲线的一般理论,二次曲面的一般理论。本书按教材内容安排全书结构,各章均包括知识点归纳、典型例题解析、教材习题解答三部分内容,有的章节还包括考研知识拓展等内容。全书按教材内容,针对各章节习题给出详细解答。本书思路清晰,逻辑性
德国数学家尤尔根·约斯特的著作BernhardRiemannUeberdieHypothesen,welchederGeometriezuGrundeliegen,以一个微分几何学家的独特视角,将黎曼几何学思想置于更为宽广的背景——哲学、物理学以及几何学——加以考察,并将黎曼的推理置于他的追随者基于他的开创性思想所获得
本书介绍了三维欧几里得空间中的曲线和曲面理论问题,分为3章:第1章为空间曲线,包括初步说明、向量函数、线的参数表达、切线、自然方程式、弗雷恩公式等;第2章为曲面,包括曲面理论简述、曲面的参数表达、切曲面和法线、曲面的第一平方形式、曲面的第二平方形式、洛德黎格定理、线的法线和曲率、莫尼耶定理、高斯定理等;第3章为复习题。
《几何原本》是古希腊数学家欧几里得所着的一部数学著作,明万历时期意大利传教士利玛窦与科学家徐光启合作,翻译成中文,是我国刊印西洋科学书籍的第一种译本。底本系国家图书馆藏明万历三十五年刻本,是现存最早的刊本。
这是一本讲述几何学基础知识的趣味科普经典。生活中,各种事物都存在着常见的几何关系,如何将学到的几何学知识应用到实际方面?别莱利曼将帮你把几何学从教室的围墙里、科学的围城中,引到户外去,如树林里、原野上、河边、路上,在那里摆脱公式和函数表,无拘无束地活学活用,用几何知识重新认识美丽的世界……
非线性泛函分析是现代数学的重要方向,包括拓扑方法、变分方法、半序方法以及应用等多方面内容作为数学专业的研究生教材,《拓扑与变分方法及应用》主要介绍拓扑方法、变分方法的发展历史、基本理论、前沿研究进展及应用,主要内容包括:非线性算子性质、隐函数定理、连续性方法、Lyapunov-Schmidt约化方法、单调性方法、拓扑度