本书共12章,内容包括:函数的极限与连续性、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用等。
全书共分八章,包括极限与连续、导数与微分、导数应用、不定积分、定积分及其应用、常微分方程、多元函数微分学、无穷级数及其应用等内容,每章均由基本要求、内容提要、典型案例分析、自测题、自测题答案、学法建议六部分构成。
本书共分7章,包括无穷级数、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、数学模型初步、MATLAB软件应用。本书的特点是题型多样、题量恰当、难度适中、方便实用,着重思维训练和能力的培养,力求使学生通过练习迅速掌握习题所涉及的基本概念、基本理论和基本方法,提高分析问题、解决问题和综合应用知
本书结构与教材一致,共分七章,分别为函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、常微分方程、定积分、定积分的应用。本书立足教学实际,内容编排合理,每个练习根据题目难易程度设置A、B两组习题,可以帮助学生充分掌握基础知识并进行相应拓展提升。本书还配有两套模拟试卷,可以辅助学生检验自身的综合学习成果。此外,
本书适用于考研数学二,涉及2000-2024年共计25年真题以及详尽解析。
本书深入探讨了高等数学在高职教育中的定位与功能,系统分析了当前高职高等数学教学中存在的问题与挑战。书中提出了一系列创新的教学理念和方法,包括以学生为中心的教学模式、问题导向的教学方法、信息技术与数学教学的融合等,旨在提高高职学生的数学素养和应用能力。
本书共十二章内容,其中本书为上册,共七章内容,分别为极限与连续续、导数与微分、微分中值定理、不定积分、定积分、定积分的应用、微分方程每章又分成内容概要、考点分析与典型例题、习题解答与强化提高三大栏目。典型例题和习题多选自历年研究生考试试题,以及各高校或全国大学生数学竞赛题,有意识地训练同学们的创新思维和归纳综合能力,为
根据高职专业人才培养目标,结合高职学生的专业课程体系和数学认知基础,针对高职学生的专业学习需要和实际情况而编写。本书按照”必需、够用”为度的原则,对本书第一版进行修订,使其更能够适应目前高职院校的教学实际需要。全书主要包括函数、极限与连续,导数与微分及其应用,不定积分,定积分及其应用,常微分方程,数学实验等内容。
根据严亚强教授编写的教材《高等数学》所涉及的知识点,本书围绕填空、选择、计算等题型编写了相关练习,共有十一章内容:函数与极限、导数与微分、中值定理和导数的应用、不定积分、定积分及其应用、向量代数与空间解析几何、多元函数的微分学、重积分、曲线积分与曲面积分、无穷级数、常微分方程。每章分为以下三个板块:一、基础过关。涵盖学
本教材在第二版的基础上进行了修订。本次修订分为三个方面。一是对内容顺序作了一些调整,比如将微分方程部分调整到上册最后一章,而将空间解析几何调整到下册第一章。二是对习题,特别是每章总复习题进行了充实,并将其分成了A、B两组,A组是基础题,B组题是提高题。三是校正了第二版的错误。本教材分为上下两册。上册包括函数、极限与连续