![]() ![]() |
大型煤电基地水资源保护关键技术 读者对象:矿业学科、生态学科、环境学科的科研人员、高校教师、相关专业的高年级本科生和研究生,从事煤炭开采、地下水保护、矿区生态修复等工作的技术人员 ![]()
水资源保护是我国大型煤电基地科学开发和区域生态文明建设的重要保障。本书按照“系统保护与协同利用”思路,针对大型煤电基地开发水资源保护利用重大技术难题,结合东部草原区典型基地研究与示范工程,聚焦矿区水资源地质保护评价、软岩区大型露天/井工矿地下水库构建、煤炭开采地下水原位保护、矿井 /矿坑水洁净储存与生态利用、水资源多目标优化配置与调控等关键技术和方法,提出了采动渗流分析、开采导水裂隙带自修复促进等新方法和大型露天矿立体储水模式、露天地下水库和含水层保护的柔性开采等新技术,初步形成适于大型煤电基地水资源科学保护与有效利用技术体系。
更多科学出版社服务,请扫码获取。 ![]()
生态脆弱区煤炭开采地下水保护与地表生态修复关键技术 国家科技进步奖 二等
目录
序 前言 第1章 概述 1 1.1 研究背景 1 1.1.1 东部草原区大型煤电基地及煤矿分布特征 1 1.1.2 东部草原区煤炭资源开发特征 9 1.1.3 大型煤电基地水资源保护利用挑战 14 1.2 国内外研究现状及存在问题 16 1.2.1 大型煤矿区煤炭开采水资源影响研究 17 1.2.2 开采扰动下地下水保护方法研究 19 1.2.3 地下水资源保护与利用方法研究 22 1.3 东部草原区大型煤电基地地下水资源保护研究 25 1.3.1 面临的主要问题和解决技术思路 25 1.3.2 主要研究内容与方法 27 第2章 大型煤电基地地下水资源地质保护评价方法 29 2.1 地下水资源地质保护的基本问题 29 2.1.1 地下水地质保护与机制 29 2.1.2 地下水资源地质保护区划 32 2.2 地下水地质保护基本条件 34 2.2.1 地下水地质保护自然地质条件 35 2.2.2 地下水地质保护工程地质条件 41 2.3 地下水保护地质模型与适宜性评价 48 2.3.1 地下水保护地质模型 48 2.3.2 地质保护适宜性评价数学模型 51 2.3.3 地质保护适宜性分类评价 55 2.4 地下水地质保护分析 58 2.4.1 扰动区地下水地质保护适宜性分析 58 2.4.2 采损区地下水地质保护适宜性综合分析 60 2.4.3 典型矿区地下水地质保护适宜性分析 61 第3章 大型露天煤矿地下水库及建设关键技术 75 3.1 露天煤矿地下水库储水能力 75 3.1.1 露天煤矿地下水库基本概念 75 3.1.2 露天煤矿地下水库储水机制与模式 79 3.1.3 地下水库库容确定方法 83 3.2 露天煤矿地下水库设计 90 3.2.1 设计原则和主要指标 90 3.2.2 地下水库主要功能设计 95 3.2.3 地下水库分项设计 96 3.3 露天煤矿地下水库建设关键技术 104 3.3.1 地下水库选址技术 104 3.3.2 储水体重构技术 107 3.3.3 坝体构筑技术 116 3.3.4 采-排-筑-复一体化技术 121 第4章 大型井工矿地下水库储水空间研究 125 4.1 采动导水裂隙带演化规律 125 4.1.1 超大工作面开采导水裂隙带结构及变化基本规律 125 4.1.2 中硬覆岩导水裂隙带演化规律分析 128 4.1.3 软弱覆岩导水裂隙带演化规律分析 134 4.1.4 岩性软硬对覆岩导水裂隙带演化的影响 141 4.2 覆岩导水裂隙带渗流特性研究 142 4.2.1 覆岩导水裂隙类型划分 143 4.2.2 不同类型覆岩裂隙的渗流特性分析 144 4.2.3 采动导水裂隙带导水主通道分析 150 4.3 地下水库储水系数研究 154 4.3.1 地下水库储水空间物理模型 154 4.3.2 采动区储水介质空隙量分析 155 4.3.3 地下水库的储水系数分析 161 第5章 采动覆岩导水裂隙带自修复机制与促进方法 164 5.1 采动覆岩导水裂隙带自修复机制 164 5.1.1 自修复的定义及特征 164 5.1.2 自修复作用过程 166 5.2 水-气-岩耦合作用的裂隙渗流影响实验研究 167 5.2.1 砂质泥岩压剪裂隙岩样实验分析 167 5.2.2 典型岩性张拉裂隙岩样实验研究 176 5.2.3 酸性水对含铁破碎岩样降渗特性实验分析 187 5.3 采动裂隙人工引导自修复促进方法 193 5.3.1 人工引导裂隙自修复的促进机制 194 5.3.2 基于铁/钙质化学沉淀封堵的自修复促进方法 195 5.3.3 基于水平定向钻孔注浆封堵的修复促进方法 201 5.3.4 基于边界煤柱/体松动爆破的裂隙促进闭合修复方法 211 第6章 软岩区煤炭开采地下水保护与分析方法 214 6.1 地下水原位保护机制与技术途径 214 6.1.1 软岩区水文地质与矿井水特征 215 6.1.2 软岩覆岩区地下水原位保护机制 218 6.1.3 地下水原位保护技术途径与模式 220 6.2 采动渗流系统及渗流场模型 222 6.2.1 采动渗流系统及特征 222 6.2.2 采动渗流场结构与效应模型 226 6.3 采动渗流场特征分析 231 6.3.1 “采-渗耦合”效应分析 232 6.3.2 采动渗流扰动特征 234 6.3.3 采动渗流辐射特征 240 6.3.4 多源采动渗流耦合关系 244 6.4 采动渗流理论应用 244 6.4.1 导通区辨识应用 244 6.4.2 保水安全开采应用 254 第7章 东部草原区大型煤矿矿坑/井水的洁净储存与利用技术 261 7.1 东部草原区煤炭开采矿坑/井水来源及特征 261 7.1.1 矿坑/井水来源及主要特征 261 7.1.2 水文地球化学特征 264 7.1.3 地下储水的水质安全特征 266 7.2 宝日希勒露天矿矿坑水储存与利用风险识别 267 7.2.1 矿井水地下储存污染组分特征 267 7.2.2 露天矿矿坑水地下储存安全风险评价 270 7.2.3 地下水库洁净调控功能设计 273 7.3 敏东一矿矿井水储存与利用过程风险识别 281 7.3.1 矿井水污染组分特征与风险因子识别 281 7.3.2 矿井水储存净化过程水质演化规律 282 7.3.3 典型污染物迁移转化过程风险分析 283 7.4 矿坑/井水洁净储存风险控制方法 287 7.4.1 矿区水质分析及风险控制 287 7.4.2 矿坑水处理工艺组合优化与效果评价 289 7.4.3 矿井水处理工艺组合优化与效果评价 292 第8章 面向生态的水资源多目标优化配置与调控方法 295 8.1 煤电基地水资源来源与利用途径 295 8.1.1 煤电基地水资源主要来源及分布特点 295 8.1.2 煤电基地水资源主要利用途径 299 8.2 典型煤电基地水资源优化配置方法 300 8.2.1 典型煤电基地需水量预测及平衡分析 300 8.2.2 煤电基地水资源多目标优化配置方法与分析 306 8.3 煤电基地水资源调控机制与方法 315 8.3.1 煤电基地水资源动态调控机制 315 8.3.2 基于煤电基地可持续开发的管控方法 316 8.3.3 基于有限水资源量的调控方法 318 8.3.4 基于多类型水质的调控方法 320 第9章 示范区地下水资源保护工程应用实例 323 9.1 胜利矿区地表储存与转移利用工程应用 323 9.1.1 矿区水资源分布及利用情况 323 9.1.2 基于地表“水湖”的储存和转移利用模式与设计 326 9.1.3 工程实施及效果 327 9.2 宝日希勒露天煤矿地下水库建设与工程应用 329 9.2.1 宝日希勒矿区水资源分布及保护模式 329 9.2.2 近地表储水层系统构建及效果分析 333 9.2.3 地下水库系统构建及效果分析 338 9.3 敏东一矿地下水资源保护方法应用研究 347 9.3.1 软岩条件构建地下水库工程试验 347 9.3.2 第四系含水层转移存储可行性试验 352 9.3.3 矿井涌水生态利用试验 358 9.3.4 地下水原位保护可行性研究与分析 363 结束语 375 主要参考文献 377 Contents xi· Contents Foreword Preface Chapter 1 Overview 1 1.1 General background 1 1.1.1 Distribution feature of mines in large-scale coal-power bases of the eastern prairie area 1 1.1.2 Development feature of coal resource in the eastern prairie area 9 1.1.3 Challenge of protecting and using water resources in large-scale coal-power bases 14 1.2 Research status and existing problems at home and abroad 16 1.2.1 The mining impact on water resources in large coal mining areas 17 1.2.2 The protection methods of groundwater resources under mining disturbance 19 1.2.3 The method research for protecting and using groundwater resources 22 1.3 Study on protecting groundwater resource in large coal-power bases of eastern prairie area 25 1.3.1 Existing problems and technical thinking for solving them 25 1.3.2 Main content and methods of the research 27 Chapter 2 Evaluation method for geological protection of groundwater resources in large-scale coal-power bases 29 2.1 Basic issues in the geological protection of groundwater resources 29 2.1.1 Geological protection and mechanism of groundwater 29 2.1.2 Division for geological protection of groundwater resources 32 2.2 Basic conditions for geological protection of groundwater 34 2.2.1 Natural conditions for the protection 35 2.2.2 Geo-engineering conditions for the protection 41 2.3 Geological models and suitability evaluation for groundwater protection 48 2.3.1 Geological models for groundwater protection 48 2.3.2 Mathematical models of the suitability evaluation 51 2.3.3 Suitability evaluation for the classified geo-conditions 55 2.4 Suitability analysis for geological protection of groundwater 58 2.4.1 Suitability analysis of the protection in disturbance zones 58 2.4.2 Suitability analysis of the protection in damaged areas 60 2.4.3 Suitability analysis for the protection in typical mining areas 61 Chapter 3 Construction of underground reservoir and key technologies in large-sized open-pit mines 75 3.1 Water-storage capability of underground reservoirs in open-pit mines 75 3.1.1 Basic concepts of underground reservoirs in open-pit mines 75 3.1.2 Water-storage mechanism and the mode in open-pit mines 79 3.1.3 Determining method for storage capacity of underground reservoirs 83 3.2 Design techniques for underground reservoirs in open-pit mines 90 3.2.1 Design principles and main indicators for construction of groundwater reservoirs 90 3.2.2 Function design of underground reservoir system 95 3.2.3 Itemized design of underground reservoir 96 3.3 Key technologies for the construction of underground reservoirs in open-pit mines 104 3.3.1 Siting methods for the underground reservoirs 104 3.3.2 Reconstruction techniques of water-storage body 107 3.3.3 Construction techniques for underground dam 116 3.3.4 Mining-dumping-constructing-restoring integrated technology for the reservoir construction 121 Chapter 4 Research on water-storage space of underground reservoirs in large-sized mine 125 4.1 Evolution law of mining-induced water-conducting fissure zone 125 4.1.1 Structure of water-conducting fissure zone and its evolution law for large-sized working face 125 4.1.2 Evolution law of water-conducting fissure zone under mining coverage with medium-hard rocks 128 4.1.3 Evolution law of water-conducting fissure zone under mining coverage with soft rocks 134 4.1.4 Influence on the evolution of water-conducting fissure zone by lithology hardness of mining coverage 141 4.2 Seepage features of the water-conducting fissure zone 142 4.2.1 Classification of water-conducting fissure zone 143 4.2.2 Seepage features of water-conducting fissure zone with different type of rocks 144 4.2.3 Main channel of mining-induced water-conducting fissure zone 150 4.3 Water-storage coefficient of underground reservoir 154 4.3.1 Physical model of water-storage space of underground reservoir 154 4.3.2 Porosity analysis of water-storage medium in mining area 155 4.3.3 Water-storage coefficient analysis of underground reservoir 161 Chapter 5 Self-healing mechanism of water-conducting fissures zone and its stimulating methods 164 5.1 Self-healing mechanisms of water-conducting fissure 164 5.1.1 Self-healing definition and its feature 164 5.1.2 Self-healing work process of water-conducting fissures zone 166 5.2 Experimental study on influences on fissure’s seepage by water-gas-rock interactions 167 5.2.1 Analysis of sandy mudstone specimens from compression-shear fissure zone 167 5.2.2 Analysis of typical rock specimens from tension fissure zone 176 5.2.3 Permeability reduction characteristics of iron-bearing broken rock samples with acid water 187 5.3 Artificially guided promotion method for the self-healing process of mining-induced fissures zone 193 5.3.1 Stimulating mechanism of artificial-guided self-healing fissure and technical approaches 194 5.3.2 Self-healing stimulating methods by plugged iron/calcium chemical precipitation 195 5.3.3 Repair promotion methods by grouting plugging of horizontal directional drilling 201 5.3.4 Repair methods of accelerating fissure closure by loose-blasting pillar/body boundary 211 Chapter 6 Analysis method for groundwater protection of coal mining under soft-rock coverage areas 214 6.1 Mechanisms and technical approaches for in-situ protection of groundwater 214 6.1.1 Features of geology and mine water in soft-rock coverage areas 215 6.1.2 In-situ protection mechanisms for groundwater in soft-rock coverage areas 218 6.1.3 Technical approaches and models for in-situ protection of groundwater 220 6.2 Mining seepage system and mining-induced seepage field model 222 6.2.1 Mining seepage system and main features 222 6.2.2 Structure and effect model of mining-induced seepage field 226 6.3 Features analysis of mining-induced seepage field 231 6.3.1 Features analysis of mining-seepage coupling effect 232 6.3.2 Disturbance features of mining-induced seepage 234 6.3.3 Radiation features of mining-induced seepage 240 6.3.4 Coupling relationship of mining-seepage process under multi-sources mining-seepage 244 6.4 Theoretical application of mining-induced seepage field 244 6.4.1 Identification of main water-conducting channel in mining-induced fissure zone 244 6.4.2 Analysis for water conservation and safe mining 254 Chapter 7 Clean storage and use technologies of groundwater for large-sized mine/pit in eastern grassland area 261 7.1 Source and characteristics of coal pit or mine groundwater 261 7.1.1 Sources and main features of pit or mine groundwater 261 7.1.2 Hydrogeochemical features of groundwater 264 7.1.3 Water-quality guarantee of underground storage 266 7.2 Risk identification of pit-water storage and utilization in Baorixile open-pit mine 267 7.2.1 Polluted component features of pit-water in underground storage 267 7.2.2 Safety risk assessment of underground storage of pit-water in open-pit mine 270 7.2.3 Cleaning design of operation and controls system for underground reservoir 273 7.3 Risk identification of mine-water storage and its utilization in Mindong No.1 mine 281 7.3.1 Polluted component features of mine-water and risk-factor identification for storage 281 7.3.2 Evolution law of water quality in mine-water storage and purification process 282 7.3.3 Migration and transformation mechanism of typical pollutants from mine water 283 7.4 Risk control method for clean storage based on treatment process of mine/pit water 287 7.4.1 Typical pollutant treatment process and parameter control 287 7.4.2 Optimization and effect evaluation for combined treatment process of pit water 289 7.4.3 Optimization and effect evaluation for combined treatment process of mine-water 292 Chapter 8 Optimally allocating and regulating water resources with ecology-oriented & multi-objectives 295 8.1 Sources and usage of water resources in coal-power base 295 8.1.1 Main sources and distribution characteristics of water resources 295 8.1.2 Main usages of water resources 299 8.2 Optimized allocation method of water resources for the typical coal power base 300 8.2.1 Water demand prediction and balanced analysis 300 8.2.2 Optimal allocation method and analysis of multi-objective usage of water resources 306 8.3 Regulation mechanism and methods of water resources in the coal-power base 315 8.3.1 Mechanism of dynamic regulation on water resources 315 8.3.2 Management and regulation methods for sustainable development 316 8.3.3 Regulation method based on limited-quantity water resource 318 8.3.4 Regulation and control methods based on multi-type water quality 320 Chapter 9 Engineering examples of protecting groundwater resources in sample area 323 9.1 Engineering application of storage and transfer based on the“Lake”model in Shengli pit area 323 9.1.1 Distribution and usage of water resources 323 9.1.2 Model and design of storage, transfer and utilization based on the“Lake” model 326 9.1.3 Engineering implementation and utilization effect 327 9.2 Construction example of the underground reservoir in Baorixile pit mine 329 9.2.1 Distribution and protection mode of groundwater resources in mining area 329 9.2.2 Construction of near-surface water storage system and its effect analysis 333 9.2.3 Construction of groundwater reservoir system and its effect analysis 338 9.3 Applied research on protection methods of groundwater in Mindong No.1 mine 347 9.3.1 On-site test of constructing underground reservoir under soft-rock coverage 347 9.3.2 On-site feasibility test of transfer and storage in the aquifer of Quaternary strata 352 9.3.3 On-site test and analysis for ecology usage of mine water 358 9.3.4 Feasibility study and analysis on groundwater protection in-situ 363 Conclusions 375 References 377
你还可能感兴趣
我要评论
|