书单推荐 新书推荐 |
材料力学(英文版)(Mechanics of Materials) 读者对象:可作为高等工科学校力学、机械、动力、材料、船舶、汽车、航空航天及相关专业的“材料力学”课程教材,其他院校教师和工程技术人员 ![]()
本书根据教育部高等学校力学教学指导委员会制定的“材料力学课程教学基本要求”编写。全书共14章,包括材料力学基本概念、轴向拉伸和压缩、剪切、扭转、弯曲内力、弯曲应力、弯曲变形、应力状态分析与强度理论、组合变形、压杆稳定、能量法、静不定结构、动载荷、疲劳,并将截面图形的几何性质等内容列入附录。各章均附有习题及参考答案。
更多科学出版社服务,请扫码获取。
1996-09-01至2003-10-01 大连理工大学 博士
1991-09-01至1994-04-01 南京理工大学 硕士
1987-09-01至1991-07-01 华东工学院 学士2020-12-31至今 大连理工大学 教授
2005-01-18至2020-12-30 大连理工大学 副教授
1996-08-31至2005-01-17 大连理工大学 讲师
1994-05-01至1996-08-30 大连理工大学 助教材料力学(英文版) 科学出版社 2024年
材料力学(第二版) 高等教育出版社 2022年
材料力学解题指导(第二版) 科学出版社 2020年
理论力学 科学出版社 2019年
理论力学解题指导 科学出版社 2019年
材料力学(数字化课程) 高等教育出版社 2018年
理论力学(数字化课程) 高等教育出版社 2018年
Contents
Chapter 1 Introduction to Mechanics of Materials 1 1.1 Introduction 1 1.1.1 Strength, Stiffness, and Stability 1 1.1.2 Research Objects of Mechanics of Materials 2 1.2 Basic Assumptions of Mechanics of Materials 2 1.3 External Force, Internal Force and Stress 3 1.3.1 External Force 3 1.3.2 Internal Force and Method of Section 4 1.3.3 Stress 6 1.4 Displacement, Deformation, and Strain 7 1.4.1 Displacement and Deformation 7 1.4.2 Strain 7 1.5 Basic Patterns of Deformation of Prismatic Bar 8 Problems 9 Chapter 2 Axial Tension and Compression 11 2.1 Introduction 11 2.2 Axial Forces and Axial Force Diagrams 11 2.2.1 Normal Force 11 2.2.2 Axial Force Diagram 12 2.3 Stress in an Axially Loaded Bar 14 2.3.1 Stresses on Cross Section 14 2.3.2 Stresses on Oblique Section 15 2.3.3 Saint-Venant Principle 17 2.4 Mechanical Behaviour of Materials Under Tension and Compression 18 2.4.1 Introduction of Tensile and Compressive Tests 19 2.4.2 Mechanical Behaviour of Materials Under Tension 20 2.4.3 Mechanical Behaviour of Materials Under Compression 23 2.5 Strength Condition of Axially Loaded Bar 25 2.6 Deformation of Axially Loaded Bar 29 2.7 Statically Indeterminate Problems of Axial Tension and Compression 34 2.7.1 Analysis of Statically Indeterminate Problem in Tension and Compression 35 2.7.2 Assembly Stress 39 2.7.3 Thermal Stress 40 2.8 Stress Concentration 43 Problems 44 Chapter 3 Shearing in Connections 50 3.1 Introduction 50 3.2 Strength Check of Shearing Deformation in Connections 50 3.3 Strength Check of Bearing Deformation 52 Problems 56 Chapter 4 Torsion 59 4.1 Introduction 59 4.2 Internal Torque and Internal Torque Diagram 59 4.2.1 Twisting Couple on a Transmission Shaft 59 4.2.2 Internal Torque and Torque Diagrams 60 4.3 Pure Shear, Shearing Stress, Hooke’s Law in Shear Situations 62 4.3.1 Shear Stress on Cross Sections of a Thin-Walled Tube Induced by Torsion 62 4.3.2 Shearing Stress 63 4.3.3 Hooke’s Law in Shearing 63 4.4 Shear Stress in a Circular Shaft 64 4.4.1 Calculation of Shear Stress 64 4.4.2 Stress on Oblique Plane of a Circular Shaft Subjected to Torsion 69 4.4.3 Strength Design 70 4.5 Torsional Deformation of a Circular Shaft and Stiffness Design 72 4.5.1 Torsional Deformation of a Circular Shaft 72 4.5.2 Stiffness Design 72 4.6 Statically Indeterminate Shaft in Torsion 76 4.7 The Strength of Helical Springs 78 4.8 Torsion of Noncircular Shafts 80 4.8.1 Free Torsion and Restrained Torsion 80 4.8.2 Rectangular Shaft in Torsion 81 Problems 82 Chapter 5 Bending 86 5.1 Introduction 86 5.1.1 Bending 86 5.1.2 Boundary Supports of Beams 86 5.1.3 Basic Types of Beams 87 5.2 Shear Force and Bending Moment 88 5.3 Shear Force Diagram and Bending Moment Diagram 92 5.4 Relationships Between Shear Forces, Bending Moments and External Loads 97 5.4.1 Differential Relations Among Shear Force, Bending Moments and External Loads 97 5.4.2 Draw the Shear Force and the Bending Moment Diagram According to Differential Relations 98 5.4.3 Draw Bending Moment Diagram by the Principle of Superposition 104 5.5 Internal Forces in Plane Frames and Curved Beams 105 5.5.1 Internal Forces of Plane Frame 105 5.5.2 Internal Force of Curved Beams 106 Problems 107 Chapter 6 Bending Stress 113 6.1 Introduction 113 6.2 Bending Normal Stress 113 6.2.1 Geometric Aspects 114 6.2.2 Physical Law 115 6.2.3 Statics 115 6.2.4 Bending Normal Stress 116 6.2.5 Normal Stress in Transverse Bending 118 6.3 Shear Stress in Bending 118 6.3.1 Shear Stress of the Beam with Rectangular Cross Section 118 6.3.2 Shear Stress of a Beam with I-Shape Cross Section 121 6.3.3 Shear Stress of a Beam with Circular and Circular Tubular Cross Section 122 6.3.4 Magnitude of Normal Stress and Shear Stress in Transverse Bending 123 6.3.5 Effects of Shear Stress on Normal Stress in Transverse Bending 124 6.4 Strength Condition of the Beam 125 6.4.1 Strength Condition of Normal Stress 125 6.4.2 Strength Condition of Shear Stress 126 6.5 Plane Bending and Bending Centre of Asymmetric Section Beams 131 6.6 Measures to Increase the Bending Strength of Beams 133 6.6.1 Selection of an Optimal Cross Section 133 6.6.2 Tapered Beams and Beams of Uniform Strength 134 6.6.3 Rearrange the External Loading of the Beam 135 Problems 138 Chapter 7 Bending Deformation 143 7.1 Introduction 143 7.2 Approximated Differential Equation of Deflection Curve 144 7.3 Calculation of Beam Deformation by the Integral Method 145 7.4 Calculate the Displacement of Beams by the Principle of Superposition 152 7.5 Stiffness Condition and Design of Beams 158 7.5.1 Stiffness Condition of Beam 158 7.5.2 Approaches to Improve Bending Stiffness 159 7.6 Simple Statically Indeterminate Beams 160 Problems 167 Chapter 8 State of Stress and Strength Theory 174 8.1 Introduction 174 8.1.1 Concept of State of Stress 174 8.1.2 General Description of State of Stress 174 8.1.3 Strength Theory 176 8.2 Plane State of Stress Analysis 176 8.2.1 Stress on Any Oblique Plane 177 8.2.2 Principal Plane 178 8.2.3 Principal Stress 178 8.2.4 Extreme Shear Stress 179 8.3 Stress Circles in the State of Plane Stress 181 8.4 Maximum Stress in the Three-Dimensional State of Stress 182 8.5 Generalized Hooke’s Law 184 8.5.1 Mathematical Formulation of the Generalized Hooke’s Law 184 8.5.2 Volumetric Strain 186 8.6 Strain Energy and Distortion Energy 187 8.6.1 Strain Energy and Strain Energy Density 187 8.6.2 Dilatational Strain Energy Density and Distortion Energy Density 188 8.7 Four Commonly Used Classical Strength Theories 189 8.7.1 Strength Theory on Brittle Fracture 189 8.7.2 Strength Theory of Plastic Yield 191 Problems 196 Chapter 9 Combined Deformation 202 9.1 Introduction 202 9.2 Unsymmetric Bending 202 9.3 Combination of Tension (or Compression) and Bending 208 9.4 Eccentric Load and Core of Section 211 9.4.1 Strength Calculation of an Eccentric Axially Loaded Bar 211 9.4.2 Core of Section 214 9.5 Combination of Bending and Torsion 215 Problems 219 Chapter 10 Stability of Compressive Columns 224 10.1 Introduction 224 10.2 Critical Force of Slender Compressive Columns and Euler’s Formula 226 10.2.1 Critical Force of a Column Hinged at Both Ends 226 10.2.2 Critical Force of the Compressive Columns with Other Types of Boundary Conditions 228 10.2.3 General Form of Euler’s Formula 230 10.2.4 Application Scope of the Euler’s Formula 230 10.3 Critical Force and Critical Stress of the Column with Medium or Small Slenderness Ratio 232 10.4 Stability Check of Compressive Columns 235 10.5 Methods to Improve the Stability of Compressive Columns 237 10.5.1 Select a Proper Section Shape 237 10.5.2 Change the Constraints of Compressive Columns 238 10.5.3 Reasonably Select Materials 238 Problems 238 Chapter 11 Energy Method 241 11.1 Introduction 241 11.2 External Work Done and Strain Energy 241 11.2.1 The External Work Done 241 11.2.2 Strain Energy of Member 243 11.2.3 Strain Energy Density 244 11.3 Castigliano’s Theorem 246 11.3.1 Complementary Work and Complementary Strain Energy 246 11.3.2 Introduction of Castigliano’s Theorem 248 11.3.3 Calculation of the Displacement by Castigliano’s Theorem 249 11.4 Principle of Virtual Work on a Deformable Body 253 11.5 Unit Load Method 254 11.5.1 Introduction of Unit Load Method 255 11.5.2 Mohr Integral 255 11.5.3 Graph Multiplication Method 260 11.6 Reciprocal Theorem 265 11.6.1 Maxwell-Betti Reciprocal Work Theorem 265 11.6.2 Theorem of Reciprocal Displacements 267 Problems 269 Chapter 12 Statically Indeterminate Structures 275 12.1 Introduction 275 12.2 Force Method and General Equation of the Force Method 276 12.2.1 Basic Unknown Variables, the Equivalent Statically Determinate System 276 12.2.2 General Formulation of the Force Method 277 12.2.3 Solution to Externally Statically Indeterminate Problem 280 12.2.4 Solution to Internally Statically Indeterminate Problem 284 12.3 Symmetric Statically Indeterminate Structure 287 Problems 295 Chapter 13 Dynamic Loads 299 13.1 Introduction 299 13.2 Stress and Strain of Members Under Motion with a Constant Acceleration 299 13.2.1 Stress of Members in a Uniformly Accelerated Motion 299 13.2.2 Stresses and Deformations of Members in a Uniform Circular Motion 302 13.3 Stress and Deformation Under Impact 305 13.4 Measures to Improve the Capability of Resisting Impact 314 Problems 314 Chapter 14 Fatigue 318 14.1 Introduction 318 14.1.1 Alternating Stress 318 14.1.2 Fatigue 320 14.2 Endurance Limit 321 14.2.1 The Endurance Limit of Materials 321 14.2.2 The Endurance Limit of a Member 322 14.3 The Fatigue Strength Check of Structures Under Symmetric Cycling Loads 326 14.4 The Fatigue Strength Check of Structures Under Asymmetric Cycling Loads 327 14.5 Measures to Improve the Fatigue Strength 328 Problems 329 Appendix A1 Geometric Properties of a Cross Section 331 A1.1 First Moment 331 A1.1.1 First Moment and Centroid 331 A1.1.2 First Moment and Centroid of a Composite Area 333 A1.2 Moment of Inertia and Product Moment of Inertia 334 A1.3 Parallel-Axis Theorem 337 A1.4 Rotation of Axes and Principal Axes 339 A1.4.1 The Rotation of Axes 339 A1.4.2 Principal Axes and Principal Moments of Inertia 340 A1.5 Principal Centroidal Moments of Inertia of Composite Areas 342 Problems 343 Appendix A2 Cross-Sectional Properties of Shapes of Steel 346 Appendix A3 Mechanical Properties of Materials 357 Appendix A4 Geometric Properties of Plane 358 Bibliography 360 Answers to Problems 361
你还可能感兴趣
我要评论
|








