《算术基础》是德国数学家、哲学家G.弗雷格的经典著作,也是数理逻辑与分析哲学的奠基之作。弗雷格试图从逻辑角度给数下严格的定义,他首先批判地考察了施罗德、密尔、洛克、莱布尼茨、贝克莱等人关于数的观点,并在此基础上提出自己的核心命题:数的陈述包含的是对概念的断言;每个数自身是独立自存的对象,数词表示的是专名;数不是主观的表
本书基于作者多年的实践教学经验和数学本身的学科特点而编写。书中的栏目有秒题大招重要公式重要结论高频公式拓展公式和常考题型。秒题大招是考研数学真题中常考题型的解题思路和方法以及解题技巧。重要公式是考研数学真题中出现频率较高、经常用到的公式。重要结论是考研数学解题时常用的知识点或扩展。高频公式是不止一个章节中经常用到的公式
本书秉持学为中心理念,用一个梦游故事串联了复变函数与积分变换课程的主要知识点,包括复数和复变函数、导数、积分、级数、留数、保形映射、傅里叶变换和拉普拉斯变换等内容。本书模糊了时空概念,强调知识体系所蕴含的科学思想方法、内在逻辑性以及表达的趣味性,本书采用章回体小说的形式,用近乎荒诞的故事和诙谐幽默的语言,解释了复变函数
傅里叶变换在物理学和工程中有着广泛的应用,非常重要.本书简要介绍了傅里叶变换的理论和应用,对物理、电气和电子工程以及计算机科学专业的学生来说很有价值.本书在简要介绍了傅里叶变换的基本思想和原理后,介绍了它在光学、光谱学、电子学和电信等领域的应用,说明其强大功能.本书还介绍了多维傅里叶理论中一些很少被讨论但非常重要的领域
本书以弦弧近似极限微积分为主线,坚持弘扬中华优秀传统数学文化,结合不同时代的应用背景阐述数学概念、数学思想和数学思维的起源与发展,特别是中国古代数学思想和数学成就及其与社会、经济和工程实践的联系。本书分为6章,内容包括:中国古代数学成就,弦弧近似与极限,欧洲数学的兴起与微积分的形成过程,微积分解决实际问题的思想和方法,
本教材根据“101计划”的要求编写。教材的编写基于编者多年的教学经验以及与兄弟院校教师的交流,兼顾了先进性与一定的普适性,注重基础性、思想性以及学科间的融会贯通,精选了例题和习题。全书共二十一章,包含集合与映射、实数、序列极限、函数极限、连续函数、导数
本书全面展现了微积分发展各阶段的重要成果,内容丰富,语言精炼。本书特别注意理论与实际相结合古典分析方法与现代分析方法相结合,采用严格而又自然的证明方法,辅以丰富的实例和精选的习题,以使学生得到充分的学术训练。对重要概念引进的动机部分进行了完善,注重
\本教材根据“101计划”的要求编写。教材的编写基于编者多年的教学经验以及与兄弟院校教师的交流,兼顾了先进性与一定的普适性,注重基础性、思想性以及学科间的融会贯通,精选了例题和习题。全书共二十一章,包含集合与映射、实数、序列极限、函数极限、连续函数、导
本书是在作者多年讲授数学分析课程讲义的基础上编写而成的,是作者多年授课经验与教学心得的总结。全书分上、下两册。上册分三部分。先感性认识与论述初等一元微积分:函数、极限与连续性、定积分、导数,微积分学基本定理,简单常微分方程及一些经典应用。接着是微积分学严格化:实数的公理化定义和极限理论,据此论证一元函数的极限、连续性和