本书是作者十多年来面向本科生开设的“离散数学”课程的教学实践积累,同时借鉴了国内外相关课程的教学体系,系统介绍了数理逻辑(命题逻辑、谓词逻辑)、集合论(集合论初步、二元关系)、代数系统(代数系统一般性质、典型代数系统)和图论(图论基础、树),并介绍了组合分析基本知识。本书给出了大量的例题、习题,附录A提供了各章习题答案
本书共分六章,包括行列式、矩阵、向量空间、线性方程组、矩阵的相似对角化、二次型等。每一章先介绍本章的主要知识点,然后详细讲解典型例题,继而精选难度中等偏上的考研真题进行讲解,每章最后都配有一定数量难易适中的习题,并在书后给出了提示与答案。对于一些章中的重点内容,或读者理解与掌握过程中容易产生疑问的内容,给出进一步的讲解
本书基于作者几十年来在多所大学的授课讲义整理而成,全书共分五章。第一章为基本架构,从多项式零点集合即代数集出发到概形概念的建立,要求读者了解拓扑流形、微分流形或者复流形的基本概念。第二章讲解代数闭域上的几何,目的是构建几何背景。第三章讲解概形进一步的结构及其上面的层。第四章、第五章则利用同调代数构造概形上层的上同调理论
为满足高等学校高等数学教学改革发展的要求,适应学生自主研学、自主研讨的开放式课堂教学模式的需要,编者以“工科类本科数学基础课程教学基本要求”为依据,以“必需、够用”为原则,充分吸取中南大学多年来在高等数学开放式课堂教学改革的成果与实践编写了本教材。本教材分上、下册,下册内容包含向量代数与空间解析几何、多元函数微分学、多
你会因为进行简单的计算而对数学感到厌烦吗?你会随着数学学习的深入,因为不知道如何解答而对数学学习产生畏难情绪吗?你会因为感到学习困难而认为数学没有意思,认为数学就是枯燥无味的吗?本书会帮你解决这些问题,颠覆你对数学学习的印象。本书共27个主题,作者将每道题目的第1问设计成稍微思考,或者看一下“解题方法”便可明白,从第2
本书以非线性可积系统作为研究对象,以符号计算系统Maple为主要工具,从新的观点出发,对非线性系统求解方法进行深入研究,提供了一些求解非线性系统特别是高维非线性系统的有效方法,主要在孤子理论经典方法的基础上,以目前广泛关注的非线性可积系统为例,扩展原有方法或构建新方法,重点演示了非线性波包括孤子、呼吸子、团块波和怪波的
本书共分为7章,内容包括非线性分析理论基础、非线性迭代的基本理论、解非线性方程组的牛顿法、解非线性方程组的LM方法、解非线性方程组的拟牛顿法、解非线性方程组的非精确牛顿法及解张量方程的迭代方法。
本书主要内容包括高等代数中的数学思想方法、多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧氏空间、双线性函数与辛空间和基本代数结构。
本书在解析高等数学基本理论的基础上,注重数学理论与实际问题相结合,列举并分析了大量的应用实例。主要内容包括函数,极限与连续,导数与微分,不定积分,定积分,常微分方程,空间解析几何,多元函数微分学,多元函数积分学基础,无穷级数。
本书以数论和集合论两个数学理论为依据来展开介绍无穷这一概念。全书的形式为每一章讲一堂课,共8章,每一章都以幽默、轻快的笔触,以及基础的数学符号来讲述与无穷相关的理论及悖论,展现了数学世界的精彩。在书中我们会遇到许多既熟悉又陌生的数学家、思想家及他们在数学之旅中的故事,如芝诺、毕达哥拉斯、伯特兰·罗素、艾米·诺特、欧几里