《高等数学竞赛题解析教程(2021)》依据全国大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照教育部制定的考研数学考试大纲编写而成,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分与三重积分、曲线积分与曲面积分、空间解析几何、级数、微分方程等九个专题,每个专题含“基本概念与内容
本书主要针对数学三,本书汇集了全国硕士研究生入学统一考试数学三试题,按《全国硕士研究生入学统一考试数学考试大纲》所规定的考试内容及其顺序,将历年同一内容的试题归纳在一起,并进行详细解答。这样便于考生复习该部分内容时了解到题目怎么考,命题如何命制,使考生掌握考研数学试题的广度和深度。
本书主要针对数学二,本书汇集了全国硕士研究生入学统一考试数学二试题,按《全国硕士研究生入学统一考试数学考试大纲》所规定的考试内容及其顺序,将历年同一内容的试题归纳在一起,并进行详细解答。这样便于考生复习该部分内容时了解到题目怎么考,命题如何命制,使考生掌握考研数学试题的广度和深度。
本书主要针对数学一。本书汇集了历年全国硕士研究生统一考试数学一试题,按《全国硕士研究生入学统一考试数学考试大纲》所规定的考试内容及其顺序,将历年同一内容的试题归纳在一起,并进行详细解答。这样便于考生复习该部分内容时了解到题目怎么考,命题如何命制,使考生掌握考研数学试题的广度和深度。
本书以考研命题为依据,精心挑选和编制了1000道左右的练习题,题目由易到难,综合性强,利于考生复习过程中对知识点逐层加深理解。本书内容包括高等数学、线性代数,依据考研复习阶段从基础到强化,再到冲刺的递进性,根据所考查内容将每个知识点的题目按照难易程度划分为强项训练和巩固提高两部分,通过大量的题目练习,使得考生复习过程中
本书以考研命题为依据,精心挑选和编制了1000道左右的练习题,题目由易到难,综合性强,利于考生复习过程中对知识点逐层加深理解。本书内容包括高等数学、线性代数、概率论与数理统计,依据考研复习阶段从基础到强化,再到冲刺的递进性,根据所考查内容将每个知识点的题目按照难易程度划分为强化训练和巩固提高两部分,通过大量的题目练习,
本书由4章组成,组织结构如下:在章中,我们研究了凸集和函数的基本性质,同时特别关注了一类在优化中很重要的凸函数;第2章主要研究了凸集的法线和凸函数的子梯度的基本演算规则,这是凸理论的主流;第3章涉及到凸分析的一些额外的主题,它们在很大程度上是应用性的;第4章从定性和数值的角度,全面地研究了凸分析在凸优化问题和选址问题中
本书分别从线性*值问题、二次函数的*值与*小值、有理函数和无理函数问题、解等式、不等式问题的常用方法和技巧……共11章介绍了竞赛中的不等式问题.从多方面为学生提供了不等式问题的解法并培养了学生的创造性思维。
本书主要介绍了仿射和外尔几何的应用。全书共分四章内容,主要研究了Walker结构、黎曼扩张等。第一章对基本的概念进行了全面的介绍;第二章和第三章研究了与流形上的仿射结构相关的各种黎曼扩张及其余切束上中性特征的相应度量,它们在涉及曲率算符的光谱几何和表面上的均匀连接的各种问题中发挥作用;第四章讨论了Kahler-Weyl
本书是一本引进版权的国外数学英文原版教材,中文书名可译为:《为有天分的新生准备的分析学基础教材》。本书的作者有三位:第一位是彼得.M.吕蒂,美国圣文森特山学院教授;第二位是吉多.L.外斯,圣路易斯华盛顿大学教授;第三位是史蒂芬.S.萧,圣路易斯华盛顿大学教授。